A Lagrangian Approach for Computational Acoustics with Meshfree Method

نویسندگان

  • Yong Ou Zhang
  • Stefan G. Llewellyn
  • Tao Zhang
  • Yun Li
چکیده

Although Eulerian approaches are standard in computational acoustics, they are less effective for certain classes of problems like bubble acoustics and combustion noise. A different approach for solving acoustic problems is to compute with individual particles following particle motion. In this paper, a Lagrangian approach to model sound propagation in moving fluid is presented and implemented numerically, using three meshfree methods to solve the Lagrangian acoustic perturbation equations (LAPE) in the time domain. The LAPE split the fluid dynamic equations into a set of hydrodynamic equations for the motion of fluid particles and perturbation equations for the acoustic quantities corresponding to each fluid particle. Then, three meshfree methods, the smoothed particle hydrodynamics (SPH) method, the corrective smoothed particle (CSP) method, and the generalized finite difference (GFD) method, are introduced to solve the LAPE and the linearized LAPE (LLAPE). The SPH and CSP methods are widely used meshfree methods, while the GFD method based on the Taylor series expansion can be easily extended to higher orders. Applications to modeling sound propagation in steady or unsteady fluids in motion are outlined, treating a number of different cases in one and two space dimensions. A comparison of the LAPE and the LLAPE using the three meshfree methods is also presented. The Lagrangian approach shows good agreement with exact solutions. The comparison indicates that the CSP and GFD method exhibit convergence in cases with different background flow. The GFD method is more accurate, while the CSP method can handle higher Courant numbers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Sound Propagation Using the Corrective Smoothed Particle Method with an Acoustic Boundary Treatment Technique

The development of computational acoustics allows simulation of sound generation and propagation in complex environment. In particular, meshfree methods are widely used to solve acoustics problems through arbitrarily distributed field points and approximation smoothness flexibility. As a Lagrangian meshfree method, smoothed particle hydrodynamics (SPH) method reduce the difficulty in solving pr...

متن کامل

Lagrangian Meshfree Particle-based Computational Acoustics for Two- dimensional Sound Propagation and Scattering Problems

Meshfree particle method, which is always regarded as a pure Lagrangian approach, is easily represented complicated domain topologies, moving boundaries, and multiphase media. Solving acoustic problems with the mesfree particle method forms a branch of the acoustic wave modeling field, namely, particle-based computational acoustics (PCA). The aim of this paper is to improve the accuracy of usin...

متن کامل

Verification and Validation of Common Derivative Terms Approximation in Meshfree Numerical Scheme

In order to improve the approximation of spatial derivatives without meshes, a set of meshfree numerical schemes for derivative terms is developed, which is compatible with the coordinates of Cartesian, cylindrical, and spherical. Based on the comparisons between numerical and theoretical solutions, errors and convergences are assessed by a posteriori method, which shows that the approximations...

متن کامل

Lagrangian Relaxation Method for the Step fixed-charge Transportation Problem

In this paper, a step fixed charge transportation problem is developed where the products are sent from the sources to the destinations in existence of both unit and step fixed-charges. The proposed model determines the amount of products in the existing routes with the aim of minimizing the total cost (sum of unit and step fixed-charges) to satisfy the demand of each customer. As the problem i...

متن کامل

Technical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic Simulations

This contribution reports on the potential and limits of a meshless Lagrangian technique, called Smoothed Particle Hydrodynamics (SPH), as a method for acoustic simulation. The established techniques for acoustic simulation, such as the Boundary Element Method (BEM), Finite Differences Method (FD), and Finite Element Method (FEM), draw on mesh-based numerical solution techniques. In spite of st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017